



Dr. Tamsyn Edwards and Dr. Paul Lee





- Research and technology advancements enable significant change to ATM
- Changes may include:
  - Narrower tolerances
  - More precise trajectories
  - Strategic vs tactical control
- System resilience is a critical issue
- Future systems must be able to degrade gracefully to maintain safety









#### **SAN JOSÉ STATE** What is graceful degradation?

- Graceful degradation describes the ability to tolerate failures
  - Reduced functionality vs catastrophic failure
- Human tend to fail gracefully; machines usually do not
- Previous research has tended to focus on graceful degradation of machines
- To design graceful degradation into future systems, need to understand degradation in ATC operations



Demand



#### Project Aims



- Identify causes of degradation in ATC
- Investigate relationships between degradation causes
- Inform understanding of the role of the controller in graceful degradation
- Identify ATCO degradation prevention and mitigation strategies







# Initial framework of graceful degradation







### Method



- Semi-structured interview (2 hours)
- Participants: 12 Retired controllers
  - TRACON and En-route, worked in California
  - Median age 63 years, experience range 20-35 years
- Example questions:
  - "What has caused 'bad day' for you in operations?"
  - "What are your control strategies for an aircraft emergency?"
- Interviews transcribed; analysed using thematic analysis







#### Result 1: Causes of degradation -Technology

Failure – Radar, Communications ٠

> "Everything is working fine and then it doesn't work. Can you keep up with the phone and radio calls?"

Unreliability ٠

> "If it doesn't work we just say forget it. It's unreliable...Until someone proves to me that it's going to work I'm not going to base my career on accidentally running an airplane into another quy's sector"

Reduction of flexibility

"Engineers designing routes will say, he's doing 160 knots and that's this many miles per minute, so he gets here then. [But] there's weather, there's emergencies, there's pilot errors"











## Result 1: Causes of degradation -



#### Environment

- Weather
- Aircraft emergencies
- Pilot requests



"They say we want to deviate left. When they say deviate left, now I'm really having to focus on that..."

- Complexity factors:
  - Sector features
    - "You've got to make your turns exactly right, your climbs, your speed, so you've got to be on everything"
  - Location of sector

"The pilot says, 'Can we deviate to the right around it?' I don't have any traffic out there, that's an easy thunderstorm"

Traffic level and complexity of traffic





#### Result 1: Causes of degradation -Human operator

- Errors (usually as a result of):
- Human-performance influencing factors, e.g.
  - Workload underload and overload

"There's a lot of times when you're probably too relaxed, then all of the sudden you're going, I better wake up here"

#### – Fatigue

"You do start to feel that mental fatigue, and you're falling behind"

#### Situation Awareness

"Somebody misses his turn and you are busy someplace else and meanwhile he has gone way past where he is supposed to go"







#### Result 2: Degradation cause and system effect

- Causes not sufficient to understand system impact
- Relationship between cause and effect is often moderated

Expected or unexpected cause
"You did have a plan. Now you don't have a plan. You're reacting "

Sudden or gradual cause

*"If I see the weather coming, I'm preplanning the solution in my head, whereas if all of a sudden, I'm hit with the emergency, then I don't have time to pre-plan"* 

Duration











#### • Co-occurrence or association

• Between or within degradation categories

"We had about 17 or 18 operations. It was IFR weather. Maintenance took the radar. I just barely had the picture - If I had looked away I would have lost that"



# Examples of associations between human factors



| Factors                   | Quotations                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Workload and<br>Stress    | Well, whenever your workload goes up your stress goes up. It kind of goes hand in hand (Participant 7)                                                                                                                                                                                                                                                               |
| Teamwork and<br>Trust     | "Working with somebody that you know just so smooth. So easy going. You trust that guy. He trusts you. He trusts you to make the right decisions and he knows what to do as far as coordination" (Participant 8)                                                                                                                                                     |
| Teamwork and<br>Workload  | "Low traffic teamwork really doesn't come into play. It is when the stress levels move up and the work is harder and there is more going on that is when the teamwork really comes into – into play" (Participant 8)                                                                                                                                                 |
| Fatigue and<br>Workload   | I wouldn't want to go back into the pressure cooker you know what I am saying with a 15-<br>minute break. I wouldn't want to (Participant 10)                                                                                                                                                                                                                        |
| Stress and<br>Vigilance   | I think you wind up overlooking things, not noticing little variable that can turn into something worse later on because your mind is stressed (Participant 9)                                                                                                                                                                                                       |
| Workload and<br>Vigilance | somebody misses his turn and you are busy someplace else and meanwhile he has gone way<br>past where he is supposed to go so now you are getting him back and trying to get him back<br>quickly, so a couple of those and then it can just all start to snowball (Participant 10)                                                                                    |
| Fatigue and SA            | Sitting there at a busy radar sector my fourth shift of the week, I've already had the quick<br>turn to the day, and then I came in, and I probably got out of bed at 3:30 that morning to<br>come to work, and I'm on my fifth cup of coffee for the day, and I remember just feeling like<br>I'm barely hanging on by my fingernails for dear life (Participant 9) |







#### • Co-occurrence or association

• Between or within degradation categories

"We had about 17 or 18 operations. It was IFR weather. Maintenance took the radar. I just barely had the picture - If I had looked away I would have lost that"

• Interactions can result in a cumulative impact

"We're very good jugglers. Something goes wrong, you can handle it. Then something else happened. Here comes another ball. Pretty soon, you're going to drop a ball"

"It starts to be exponential as things happen, it never seems to be linear, it just goes a lot faster"

- Understanding interactions is critical:
  - Design of systems capable of graceful degradation design
  - Predicting, preventing and mitigating degradation





#### **SAN JOSÉ STATE** Result 3(Cont.): Function Failure

- Occurs as a result of interactions between technology and context
- Examples:
  - Datalink communications and environmental off-nominal events

"Direct communications are extremely important. Using automation in a normal flow of traffic is fine. But in emergency situations or heavy traffic situations, it becomes a detriment"

Conflict alert in terminal environments

"In a terminal environment, it's very unreliable. Rarely do we use [it ]"

- Implications:
  - ATCO Overload
  - Risk assessment
  - Future system design







# Result 4: Prevention and mitigation of system degradation

• Pre-degradation strategies

"You don't want to see a catastrophic failure. That there are safeguards that are built in that you have to rely on"

- In-time prevention and mitigation strategies
  - ATCOs change control strategies to make the system work
  - Strategies are learned through experience
  - Strategies are dependent on awareness



## Result 4 (Cont.): Prevention and MIVERSITY mitigation of system degradation



- Mitigation strategies for **Technology**-related causes of degradation
  - Become more conservative
  - Increase safety buffers
  - 'Back to basics'

*"First, make sure that everyone is separated, and then try and get everyone out of the sectors as quickly as possible"* 

#### Mitigation strategies: **Technology** causes of degradation



Examples of mitigation strategies for radio outages

Examples of mitigation strategies for Flight processing/data tag failure

| Strategy<br>grouping              | Strategy                                                                                                                               |                              | Strategy<br>grouping                | Strategy                                               |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|--------------------------------------------------------|
| Replace<br>function               | Coordinate with next center to find a<br>frequency and contact aircraft<br>Coordinate with next center to control<br>affected airspace |                              | Control<br>strategy                 | Resort to basics<br>Conservative control               |
|                                   |                                                                                                                                        |                              |                                     | Verbally ask pilots: Check altitudes                   |
|                                   | assed information to center -<br>Iternative frequency                                                                                  | Try and remember information |                                     |                                                        |
| Prevent<br>worsening<br>situation | Ground or hold traffic in other sectors<br>Re-route airborne traffic around the<br>sector                                              |                              | Prevent<br>from<br>getting<br>worse | Slow down aircraft into sector call neighboring sector |
|                                   |                                                                                                                                        |                              |                                     |                                                        |

## Result 4 (Cont.): Prevention and MITIGATION of system degradation



- Mitigation strategies for **Technology**-related causes of degradation
  - Become more conservative
  - Increase safety buffers
  - 'Back to basics'

*"First, make sure that everyone is separated, and then try and get everyone out of the sectors as quickly as possible"* 

- Mitigation strategies for **Environment**-related causes of degradation
  - Separation altitude, lateral distance, speed
  - Utilize surrounding airspace
  - Ground delay/ground stop

#### Mitigation strategies: **Environment** causes of degradation



Examples of mitigation strategies for thunderstorms

| Strategy                 | Strategy                                             | Strategy grouping  | Strategy                                                                                    |
|--------------------------|------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------|
| grouping                 |                                                      |                    | Back to basic scan – more focused                                                           |
| Preplan (if<br>possible) | Start organizing traffic early into manageable flows |                    | Anticipate future: prevent getting<br>behind<br>Build new route: ask first pilot to deviate |
|                          | More conservative control prior to                   | Control<br>changes | at direction; ask aircraft to follow                                                        |
|                          | thunderstorm appearing to leave                      |                    | Ask for spacing coming into sector                                                          |
|                          | room for flexibility to change                       |                    | Slow down the situation – create more                                                       |
| Gathering<br>information | From pilots: how far to maneuver                     |                    | space between aircraft                                                                      |
|                          | around it an altitudes affected                      |                    | Use altitudes to separate if spacing isn't                                                  |
|                          | From pilots and/or weather repots:                   |                    | sufficient                                                                                  |
|                          | intensity $(1-5)$                                    |                    | Use neighboring sectors' airspace (point                                                    |
|                          |                                                      |                    | outs)                                                                                       |
|                          | From weather reports: Location and                   |                    | Hold at lower altitudes                                                                     |
|                          | movement pattern                                     |                    | Increase distance between aircraft                                                          |
|                          | Look at basic weather data on radar                  |                    | More conservative                                                                           |
|                          | scope                                                | Stop traffic       | Refuse to take handoffs/aircraft                                                            |

## Result 4 (Cont.): Prevention and mitigation of system degradation



- Mitigation strategies for **Technology**-related causes of degradation
  - Become more conservative
  - Increase safety buffers
  - 'Back to basics'

*"First, make sure that everyone is separated, and then try and get everyone out of the sectors as quickly as possible"* 

- Mitigation strategies for **Environment**-related causes of degradation
  - Separation altitude, lateral distance, speed
  - Utilize surrounding airspace
  - Ground delay/ground stop
- Mitigation strategies for **Human operator**-related causes of degradation
  - Strategies focused on reducing the impact of performance-influencing factors, such as workload and stress

#### Commonalities Between Strategies: Time and Space











- Graceful degradation is essential for system safety
- ATCOs have a critical role in graceful degradation
- Time and space are essential for online strategies
- Identification of interactions between degradation causes is necessary for future system design and risk prevention
- A System envelope framework may inform research and support designers to ensure the system stays within tolerance









- Future system design needs to be flexible for ATCOs to use mitigative strategies
- Potential interactions should be identified and designed out or mitigated
  - Future design should take into account the context of tool use
- Reduction of interaction relationships through system design
- Implications for future consideration of Artificial intelligence in ATC







#### Thank you!

#### tamsyn.e.edwards@nasa.gov



# AIRSPACE OPERATIONS LAB

#### **Controllers on the Edge:**

# Graceful degradation in ATM and the human performance envelope

Dr. Tamsyn Edwards and Dr. Paul Lee









#### Back up slides



UNIVERSIT

#### **Project Aims**

Identify causes of degradation in ATC

 Investigate relationships between degradation causes

 Inform understanding of degradation prevention and ATCO mitigation strategies





Technology - related causes

**Environment - related causes** 

| Total<br>equipment<br>and tool<br>failure | Radar primary, secondary                     | Sector      | Shape and size of airspace      |
|-------------------------------------------|----------------------------------------------|-------------|---------------------------------|
|                                           | Radio Transmitter/receiver                   |             | Crossing routes/conflict points |
|                                           | Internal communication/phonelines            |             | Mix of traffic (IFR and VFR)    |
|                                           | Issues with aircraft VHF radio               | features    | Climbing/descending traffic     |
|                                           | Weather prediction tool failure              |             | Traffic presentation i.e.       |
| Degraded                                  | Flight plan data partial or complete         |             | Integration of arrival streams  |
| technology                                | failure                                      |             | Military aircpace               |
|                                           | Callsign failure (just leaving radar target) |             |                                 |
| Limitations                               | Conflict probe and alert                     | Location of | Mountains – takes away          |
| of                                        | Auto hand-off                                | sector      | airspace/ flexibility           |
| automated                                 | Sequencing tools                             | Sector      | Mountains – thunderstorms       |
| tools                                     | Inadequate design for human use              |             | build quickly without notice    |
| Technology                                | "In those situations where you need to       | Traffic     | Traffic amount and complexity   |
| resulting in a                            | have that flexibility and adjustment,        |             |                                 |
| loss of<br>flexibility                    | sometimes it isn't there" (Participant 6).   |             |                                 |
| Indirect                                  | Skill degradation                            |             |                                 |
| concerns                                  | Complacency                                  |             |                                 |
| resulting<br>from                         | Future traffic increases                     |             |                                 |
| automation                                |                                              |             |                                 |



i.e.





# SAN JOSÉ ST Causes of degradation (cont.)

Human factor related causes

| Human                  | Examples                                             |  |
|------------------------|------------------------------------------------------|--|
| Factor                 |                                                      |  |
| Workload               | Overload and underload                               |  |
| Inadequate             | Incorrect mental picture                             |  |
| Situation              | Falling behind                                       |  |
| awareness              |                                                      |  |
| Communicat             | Transposing callsigns                                |  |
| ions                   | Incorrect readback/hearback                          |  |
| 10115                  | Missing calls                                        |  |
|                        | Slower at developing plan                            |  |
| Fatigue                | Slower to respond                                    |  |
|                        | Don't perceive issues are quickly or clearly         |  |
| Stroco                 | Poor planning                                        |  |
| Stress                 | Inattention                                          |  |
| Vigilanco              | Overlooking things                                   |  |
| vignance               | Missing hand-offs                                    |  |
| Inadequate             | dequate Passive D-side – needs to be told what to do |  |
| Teamwork Uncooperative |                                                      |  |



### Interaction of sudden and unexpected causes





Unexpected