Human Factors Challenges in the Flight Deck

Kathy Abbott Brief to Future Sky Safety on Final Approach

November 6-7, 2018

Federal Aviation Administration

Challenges – not a complete list

- Complexity
- Dealing with change
- Information management
- Data too much or not enough?
- Effectiveness of risk mitigations
- Dealing with the unexpected
- Automated systems/autonomy

Challenges – not a complete list

- Complexity
- Dealing with change
- Information management
- Data too much or not enough?
- Effectiveness of risk mitigations
- Dealing with the unexpected
- Automated systems/autonomy

Complexity

- Increase in numbers and diversity of operations
- Pilot-controller interaction

Tradeoff between complexity and flexibility

A Lot to Manage

Air Agency Certificates: 6,219

811 Pilot Training Schools 4,907 Repair Stations 177 Maintenance Training Schools 324 Pilot Training Centers

Air Operator Certificates: 5.068

70 Major Air Carriers -- (e.g. United Airlines) 1,936 Commuter Air Carriers/On Demand Air Taxis 85 Commercial Operators (e.g. Baltimore Orioles) 486 Foreign Air Carriers (e.g. Lufthansa) 354 External Load (Logging/Oil Platform) 1,807 Agricultural Operators 330 Public Use Authorities (State/City/Police)

Mechanics with Inspection Authority: 22,460 Approved Manufacturers: 1,539

Designees: 9,089

•2.844 Aircraft Certification 3,627 Flight Standards 2,618 Aerospace Medicine

Non-Pilot Air Personnel: 696,676

 321,308 Mechanics & repairmen 25,454 Control Tower Operator 222,037 Flight Attendant 66,423 Ground instructors 61,454 other (dispatchers/flight navigators/parachute riggers/flight engineers)

National Transportation Safety Board: 621

39 Safety Recommendations (avg/yr based on last 5 yrs) 337 Formal NTSB requested for FAA research & info 245 Open NTSB Safety Recommendations

ATCS Medical Clearance Exams: 13.895

•13.802 Air Traffic Controller Workforce 93 Flight Service Station Workforce

Airmen Medical Examinations: 384,798

•32,776 Special Issuances 341,470 Standard Issuances

Aviation Industry Entities Covered by Anti-Drug & Alcohol Programs: 6,829

Aircraft: 309,423

7.631 Air Carrier Aircraft 710 Commuter Air Carrier Aircraft 8,621 On Demand Air Taxi Aircraft 213,905 General Aviation Aircraft

Aviation Authorities - other countries: 427

- - 48 Countries covered by Bilateral
 - **Agreements**
 - **192 Foreign Carrier Aviation Authorities** 187 Accident Investigation Authorities

Check Airmen: 9,071

•5.573 Part 121 117 Parts 121/135 3,381 Part 135

Active Pilots: 736,461

- 167,556 ATP
- 115,816 Commercial
- 175,762 Private
- 147 Recreational
- •6,245 Sport
- •167.636 Student
- •40,699 Foreign Pilot
- 106.026 UAS Remote Pilots

AOV Credentials: 17,257

- 12.649 ATCS Credentials
- •4,415 ATSS Credentials
- 193 AIS Credentials

Flight Instructors: 108,273

UAS Registrations: 1,223,073 •958,505 Hobby 257,970 Commercial •6,598 Paper Registration

Pilot-Controller Interaction – Selected Examples

- Half-degree waypoint issue in North Atlantic Tracks
- Late runway changes
- Go-around from visual approach
- Defining stabilized approaches
- Airspace procedure complexity
- Complex clearances
- Conditional clearances

Operational Factors – Complexity of Instrument Flight Procedures (IFPs)

- ATC Intervention (such as)
 - (Late) route amendments
 - Unpublished restrictions
 - Vectors
 - etc...

Aircraft Factors

- Lack or unreliability of automated systems
- Performance characteristics

Crew Factors

- (Standard) expectations
- Fatigue
- Communication style
- Distractions
- Local area familiarity
- Familiarity with different types of IFPs

Operator Factors

- Independence vs. dependence on Dispatch
- Clarity and consistency of PF/PM roles in reviewing IFPs

Environment Factors

- Terrain
- Traffic
- Weather (Wind or IMC)
- Prohibited airspace

Complex clearances

Example format: "Cleared direct (fix), (crossing altitude if necessary), change to runway (runway number), descend via (STAR), expect (instrument approach)"

Legal, but complex

Conditional Clearances

On the ground

 "Line up and Wait after landing aircraft (or behind departing aircraft)" or "After landing aircraft, line up and wait, after landing aircraft"

Note: Conditional clearances involving runway operations are not used in the US

• In the air

- AT [time/position] CLIMB/DESCEND TO [level] or AT [time/position] CLIMB/DESCEND TO AND MAINTAIN [altitude] (Note: Text displayed depends on implementation)
- Debated in international circles for years: Pilots hate them, controllers say that their airspace can't function well without them

Our Brains are Set Up to:

Process information in the most efficient way

- Seeing what we expect to see
- More likely to process information that conforms to our expectations
- Focus on the most salient information

ical. Situations where k silot will self-separate and/o perform duties station-keeping maneuvers are anticipated. But there will likely also be situations where the ground nsed automation will perfor rration functions, signals, or

Courtesy K. Cardosi, Volpe

Federal Aviation Administration

Drivers of Change in the System

A more globally connected system Aviation is an **increasingly global** enterprise under increasingly complex and decentralized business models

Projected growth in demand and diversity

from conventional customers as well as new entrants in non-traditional areas

Growing aviation demand & diversity

The public has internalized the **unprecedented levels of aviation safety**

How Are Flight Operations Changing?

 New ways to do Communications, Navigation and Surveillance

New Technologies and Operators

Change in Aviation

- Change management
- Change fatigue
- Change can bring risk

Accident Rates by Years Following Introduction

Hull Loss and/or Fatal accidents - Worldwide Commercial Jet Fleet - 1959 through 2003

11

How are things changing for pilots?

- Sometime simpler, sometimes more complex
- More tasks
- Different errors
- More use of automated systems
- More information

Flight Deck Information

Outside the Flight Deck: Operational Data – Too Much or Not Enough?

- More data
- Better data? Sometimes yes, sometimes no
- Every data source has strengths and weakness
- Still major gaps
- Remember absence of evidence is not evidence of absence
- Data still mainly from the "front line"

Scary Stuff

Risk Mitigations

(in decreasing order of effectiveness)

- Eliminate hazard
- Alter design
- Incorporate engineered features or safety devices
- Provide warning devices
- Incorporate signage, procedures, training

Decreasing effectiveness

Source: MIL-STD-882E System Safety Handbook

Concluding remarks

- Managing complexity and change are key parts of moving forward
- Multiple, dissimilar sources of data will help us make better decisions
- Information management needs attention
- Mitigate risk in the most effective way possible

