How European research contributes to aviation safety

Fred Abbink

Brussels, March 9, 2017
1. Start of EU Aeronautics Research

2. Vision 2020, ACARE and SRAs

3. Safety related projects in the EU Framework Programmes

4. Clean Sky and SESAR

5. ACARE Beyond Vision 2020 and Flight Path 2050

6. Conclusions
Growth of the European Union

Milestones and enlargement of EU

- 1951 Treaty of Paris (European Coal and Steel Community ECSC)
- 1957 Treaty of Rome (EEC, ECSG, Euratom) (6 members)
- 1986 Single European Act (12 members)
- 1992 Maastricht Treaty (EC, CSFP, PJCC, JHA)
- 2007 Lisbon Treaty (EU)
- 2013 Growth to 28 members
- 2017 Brexit

European achievements

- Single European Market
- Single Outer Border (Schengen)
- Single Currency (Euro)
- European Aviation Safety Agency (EASA)
- European Defence Agency (EDA)
- ESA, ArianeSpace
- Copernicus and Galileo
- Single European Sky (SES)
- European Framework Programmes
- JUs CleanSky and SESAR
1967 Airbus
“Toulouse or not To Lose”

- **1960s** French and UK 200 seater airliner plans:
 - Sud Aviation: Galion,
 - BAC: BAC 2-11,
 - HSA/Breguet/Nord Aviation: HBN 100

- **July 1967** France, Britain and Germany ministers agreed to take appropriate measures for the joint development and production of an “airbus.” (FR 37.5 %, UK 37.5%, GE 25%). Rogier Béteille became technical director of A300 Programme.

- **Dec 1968** Britain announced to pull out. (Brexit 1?). GE proposed to step up to 50% if FR did the same. HSA needed £35 million for tools to design and build the wings. GE provided the loan.

- **May 1969 Paris Airshow** A300 born as partnership (GIE) of Sud Aviation, HSA and Deutsche Airbus.
Airbus (New technology and “Economy of Scale”)

1972: A300
- 561 produced

1982: A310
- 255 produced

1987: A320
- 7,421 produced
Deliveries and market share

Large commercial aircraft

Boeing
Airbus
Market share (percent)

1975 '80 '85 '90 '95 2000 '05 '10

Note: 2011 Airbus deliveries over 530, industry sources say. Figures due on Jan. 17
Boeing data includes McDonnell-Douglas pre-1997 merger

Source: Company data

1973-2010 Airbus Market Share Development
1987 EUROMART and Euroconsult Studies
Euromart Benefit Study of Cumulative Technology Benefit

(192 million ECU on 10 A310-300s for 15 years)
1989 EU FWP 2: BRITE & EURAM - AREA 5
Commission of the European Communities

EVALUATION OF SPECIFIC ACTIVITIES RELATING TO AERONAUTICS
(BRITE/EURAM - AREA 5 - 1989/90)

- Interim Report -

Research Evaluation - Report N° 43 EUR 13000

<table>
<thead>
<tr>
<th>AERODYNAMICS</th>
<th>LEAD CONTRACT.</th>
<th>N° OF PARTNERS</th>
<th>TOTAL COST ECU</th>
<th>CEC FUNCTION K ECU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investig. of Supersonic Flow Phenom.</td>
<td>AERITALIA</td>
<td>14</td>
<td>2.565</td>
<td>1.522</td>
</tr>
<tr>
<td>Investig. of Laminar Flow Technology</td>
<td>BAE</td>
<td>14</td>
<td>2.447</td>
<td>1.423</td>
</tr>
<tr>
<td>Helicopter Rotor/Fuselage</td>
<td>AGUSTA</td>
<td>14</td>
<td>3.355</td>
<td>1.814</td>
</tr>
<tr>
<td>Interational Aerodyn.</td>
<td>DORNIER</td>
<td>16</td>
<td>3.146</td>
<td>1.693</td>
</tr>
<tr>
<td>Multi-Block Mesh Generation for CFD</td>
<td>NEBB</td>
<td>12</td>
<td>2.007</td>
<td>1.057</td>
</tr>
<tr>
<td>Validation of CFD-Codes</td>
<td>VDI</td>
<td>8</td>
<td>800</td>
<td>400</td>
</tr>
<tr>
<td>Upwind Schemes for Navier-Stockes Solvers</td>
<td>NBB</td>
<td>10</td>
<td>2.937</td>
<td>1.459</td>
</tr>
<tr>
<td>CFD Design Methods for Rotorcraft Blades</td>
<td>GONERA</td>
<td>14</td>
<td>2.371</td>
<td>1.101</td>
</tr>
<tr>
<td>Contrib. to Europ. Aeron. Supercomputing Network</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACOUSTICS</th>
<th>LEAD CONTRACT.</th>
<th>N° OF PARTNERS</th>
<th>TOTAL COST ECU</th>
<th>CEC FUNCTION K ECU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Noise Control in Aircraft (ASACGA)</td>
<td>DORNIER</td>
<td>22</td>
<td>3.601</td>
<td>1.745</td>
</tr>
<tr>
<td>Rotorcraft Exterior Noise Research</td>
<td>NEBB</td>
<td>10</td>
<td>3.074</td>
<td>1.695</td>
</tr>
<tr>
<td>Acoustic Fatigue and Related Damage Tolerance</td>
<td>AMD-BA</td>
<td>14</td>
<td>2.937</td>
<td>1.459</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRBORNE SYSTEMS AND EQUIPMENT</th>
<th>LEAD CONTRACT.</th>
<th>N° OF PARTNERS</th>
<th>TOTAL COST ECU</th>
<th>CEC FUNCTION K ECU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Technologies Impact on Cockpit (FANSTIC)</td>
<td>AEROSPA-TIALE</td>
<td>14</td>
<td>3.698</td>
<td>1.904</td>
</tr>
<tr>
<td>Optical Data Transmission</td>
<td>NBB</td>
<td>12</td>
<td>2.630</td>
<td>1.330</td>
</tr>
<tr>
<td>New Optical Sensor Concept for Aeron. (NOSCA)</td>
<td>THOMSON-CSF</td>
<td>5</td>
<td>1.151</td>
<td>587</td>
</tr>
<tr>
<td>Helicopter Health and Usage Monitoring Research</td>
<td>WESTLAND</td>
<td>6</td>
<td>1.667</td>
<td>834</td>
</tr>
<tr>
<td>Integr. Modular Avionics Software (IMAGES)</td>
<td>AEROSPA-TIALE</td>
<td>19</td>
<td>2.273</td>
<td>1.101</td>
</tr>
<tr>
<td>All-Electric Aircraft Flight Control Actuation</td>
<td>CASA</td>
<td>13</td>
<td>1.664</td>
<td>953</td>
</tr>
<tr>
<td>Civil Aircraft Protect. against Ice (CAPRI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROPULSION SYSTEMS</th>
<th>LEAD CONTRACT.</th>
<th>N° OF PARTNERS</th>
<th>TOTAL COST ECU</th>
<th>CEC FUNCTION K ECU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ducted Propfan Investigations (DUPFEN)</td>
<td>NBB</td>
<td>17</td>
<td>2.135</td>
<td>1.163</td>
</tr>
<tr>
<td>Airframe/Propulsion Integr. (GEMINI)</td>
<td>AEROSPA-TIALE</td>
<td>15</td>
<td>2.153</td>
<td>1.044</td>
</tr>
<tr>
<td>Rotor/Wing Interaction (Propwing)</td>
<td>THESSELL</td>
<td>4</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Transition in Turbomachinery Flows</td>
<td>UNIV. OF SNECIA</td>
<td>3</td>
<td>445</td>
<td>445</td>
</tr>
<tr>
<td>Tip Clearance Effects in Axial Compressors</td>
<td>VKI</td>
<td>5</td>
<td>1.424</td>
<td>880</td>
</tr>
<tr>
<td>Transonic Turbine Wake Mixing Process</td>
<td></td>
<td>6</td>
<td>606</td>
<td>329</td>
</tr>
<tr>
<td>Bearing with Minimum Lubrication</td>
<td>TURBONECA</td>
<td>10</td>
<td>1.307</td>
<td>778</td>
</tr>
<tr>
<td>Low-Emission Combustor Technology</td>
<td>MUNCHEN</td>
<td>14</td>
<td>3.687</td>
<td>1.587</td>
</tr>
<tr>
<td>Thin-Film Sensors for Aero-Engines</td>
<td>MUNCHEN</td>
<td>6</td>
<td>1.660</td>
<td>797</td>
</tr>
</tbody>
</table>

TOTAL 65.181 34.760
1994 European Research Establishments

- 11 Research Establishments
- 5000 researchers
- 0.5 Billion Euro /yr. research projects
- 175 MSc/PhD thesis/yr.
- 6000 Publications/yr.
- 10 Billion Euro worth of facilities
1. Start of EU Aeronautics Research

2. Vision 2020, ACARE and SRAs

3. Safety related projects in the EU Framework Programmes

4. Clean Sky and SESAR

5. ACARE Beyond Vision 2020 and Flight Path 2050

6. Conclusions
2001 Advisory Council for Aeronautics research in Europe (ACARE)

Vision 2020

Defining the technical challenges that must be overcome to meet the objectives

Quality & Affordability
The Environment
Safety
Air Transport System efficiency
Security

The Challenges
Assessment of the Challenges identifies what technical work has to be done

The Strategic Research Agenda

The agenda informs, guides and influences the research work that will be supported by the stakeholders

The Stakeholders

Aviation
Airports
European Commission
Other European Institutions
Regulatory and ATM services
Research Institutions + Universities
Member States
Manufacturers

The Agenda is converted into research programmes by the stakeholders who will contribute funds, resources and capability to ensure the mission guided by the Strategic Research Agenda

Research Programmes

The research programmes are executed and technical solutions to the problems identified in the challenges are provided; the agenda is created as new capabilities for the supply chains to create products, systems and services

Capabilities

The supply chain creates new products, systems and services for integration into products for a sustainable air transport system – these impact upon the system in a number of ways:

- These impacts create the changes that will collectively deliver the Top Level Objectives

Creating Competitive Leadership
Meeting Society’s Needs

Strategic Research Agenda
VOLUME 1

Advisory Council for Aeronautics Research in Europe
October 2004
EU Aeronautics RDT Budgets and Projects

Since 1990 the EU has funded over 400 RTD projects representing a budget of about €4 billion (EU funding ± 50%).
1. Start of EU Aeronautics Research

2. Vision 2020, ACARE and SRAs

3. Safety related projects in the EU Framework Programmes

4. Clean Sky and SESAR

5. ACARE Beyond Vision 2020 and Flight Path 2050

6. Conclusions
Safety related Projects in FWP 2-7

<table>
<thead>
<tr>
<th>SAFETY</th>
<th>FP1-3</th>
<th>FP4</th>
<th>FP5-6</th>
<th>FP7</th>
</tr>
</thead>
<tbody>
<tr>
<td>certification</td>
<td>Eurice 96/Cira</td>
<td>Musca 05/EADS</td>
<td>COFCLUO 06/Uni</td>
<td>Missa 08/Ai</td>
</tr>
<tr>
<td>safety</td>
<td>Aerosafe NLR</td>
<td>Jaretel 97/NLR</td>
<td>Desire 90/NLR</td>
<td>Asicba 04/SME</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ANAS-Tales</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Natacha SME</td>
</tr>
<tr>
<td>Cockpit / Cabin systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire detection & modelling</td>
<td>Firedass 96/SME</td>
<td>Firedetex 00/Ai</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-wind, vortex, turbulence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightning protection</td>
<td>Fulmen 96/Ai</td>
<td>ILDAS 06/NLR</td>
<td>Lightning 05/SME</td>
<td></td>
</tr>
<tr>
<td>Icing</td>
<td>Capri 90/Bae</td>
<td>EURICE 96/CIRA</td>
<td>ACIDS 02/SME</td>
<td>EXTICE 08/Cira</td>
</tr>
<tr>
<td>Flight Control and flight instruments</td>
<td>ADFCS 98/Ai</td>
<td>ADFCS 01/Bae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>REAL 99/NLR</td>
<td>SINSAE 05/Uni</td>
<td>COFCLUO 06/Uni</td>
<td>ACFA 08/EADS</td>
</tr>
<tr>
<td></td>
<td>HICAS 98/DLR</td>
<td>CAST 03/Agu</td>
<td>CRAFTV 95/Air</td>
<td>ADDSAFE 09/SME</td>
</tr>
<tr>
<td>Damage tolerance, crashworthiness, structural health monitoring and hardening</td>
<td>Crashv 93/Bae</td>
<td>DAMASCOS 98/Uni</td>
<td>Posicos 00/DLR</td>
<td>Cratini 04/DLTR</td>
</tr>
<tr>
<td>Human factors</td>
<td>DATON 04/Uni</td>
<td>CoComot 04/DLR</td>
<td>VULCAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ref. Knoerzer Aerodays 2015
Aeronautics and Air Transport Research
7th Framework Programme 2007-2013
Aeronautics and Air Transport Research FWP 7 2007-2013
Calls 2007 & 2008: Safety

- AAS Integrated Airport Apron Safety Fleet Management
- MISSA More Integrated System Safety Design
- ACFA 2020 Active Control of Flexible 2020 Aircraft
- GREEN-WAKE Demonstration of LIDAR-Based wake vortex detection
- WakeNet3-Europe European Coordination Action
- DELICAT Demonstrator of Lidar-Based Clear Air Turbulence Detection
- ALICIA All Condition Operations and Innovative Cockpit Infrastructure
- ADDSAFE Advanced Fault Diagnosis for Safer Flight Guidance and Control
- HISVESTA High Stability Vertical Separation Altimeter Instruments
- HUMAN Model-based Analysis of Human Error during A/C cockpit design
- ODICIS One Display for Cockpit Interactive Solution
- SUPRA Simulation of Upset Recovery in Aviation
- AISHA II Aircraft Integrated Structural Health Assessment II
- ALEF Aerodynamic Load Estimation at Extremes of the Flight Envelope
- EXTICE Extreme Icing Environment
- ON-WINGS ON-Wing Ice Detection and Monitoring System
- HIRF SE HIRF Synthetic Environment research Programme
Aeronautics and Air Transport Research FWP 7 2007-2013
Calls 2010 & 2011: Safety

- AIRCRAFTFIRE Fire-risk Assessment and Increase of Passenger Survivability
- ARISTOTEL Aircraft and Rotorcraft Pilot Couplings. T&T Alleviation and detection
- SVETLANA Safety improvement through Automated Flight Data Analysis
- MASCA Managing System Change in Aviation
- SARISTU Smart Intelligent Aircraft Structures
- GABRIEL Integr. Ground and onboard System for support of A/C Safe T/O and landing
- EDUCAIR Assessing the educational gaps in Aeronautics and Air Transport
- WEZARD Weather Hazards for Aeronautics
- ELECTRICAL Novel Aeronautical Multifunctional Composite Structures with bulk Electrical Conductivity and Self-sensing Capabilities
- AEROPLAN Composites Repairs and Monitoring and Validation
- WASIS Composite Fuselage Section Wafer-design Approach for increasing safety in Worst-case Situations and Minimising Joints
- 4DCO-GC 4-Dimensional Contracts-Guidance and Control
Aeronautics and Air Transport Research FWP 7 2007-2013
Calls 2012 & 2013: Safety

- ACROSS Advanced Cockpit for Reduction of Stress and Workload
- A-PIMOD Applying Pilot Models for Safer Aircraft
- MAN4GEN Manual operation of 4\(^{th}\) generation airliners
- IARECONFIRGURE Reconfiguration of Control in Flight for integral global Upset Recovery
- SS Improving Aircraft Safety with Self-Healing structures
- HAIC High Altitude Air Crystals
- JEDI-ACE Japanese-European De-Icing Aircraft Collaborative Exploration
- PROSPERO Proactive Safety Performance for Operations
- RESEARCH Reliability and Safety-Enhanced Electrical Actuation System Architectures
- SAFUEL The Safer Fuel System
- UFO Ultrafast wind sensors for Wake hazards mitigation
- REPAIR Future Repair and Maintenance for the Aerospace Industry
- STORM Efficient Ice protection systems and Simulation techniques of Ice release on propulsive systems
- VIBRATION Global in-flight health monitoring Platform for composite structures
- FLY-BAG2 Advanced technologies for Bomb-Proof Cargo containers
- ASCOS Aviation Safety and Certification of new Operations and Systems
- RESILIENCE2050.EU New Design Principles fostering Safety, Agility and Resilience ATM
1. Start of EU Aeronautics Research

2. Vision 2020, ACARE and SRAs

3. Safety related projects in the EU Framework Programmes

4. Clean Sky and SESAR

5. ACARE Beyond Vision 2020 and Flight Path 2050

6. Conclusions

CS: EU Contribution: 800 Meuro
Targets:
- 50% reduction in CO2 emissions
- 80% reduction in NOx emissions
- 50% External noise reduction
- Improved environmental impact of A/C Life Cycle

CS2: EU Contribution 1.755 Meuro
Targets:
- 75% reduction in CO2 emissions
- 90% reduction of NOx emissions
- 65% External noise reduction
- Enhanced competitiveness
Clean Sky towards Flying Demonstrators

Design Studies, Rig Testing, Modelling

Engine / System Demonstrators

Airframe Demonstrators

Environment

Economy

Society

www.cleansky.eu
Not legally binding
Clean Sky Large Demonstrators

Counter Rotating Open Rotor (CROR)

Breakthrough Laminar Aircraft Demonstrator Europe (BLADE)

Diesel Helicopter Engine

Large 3-shaft Advanced Low Pressure
Clean Sky 2 Large Demonstrators

Large Passenger Aircraft:
- Platform 1. Advanced Engine and Aircraft Configurations
- Platform 2. Innovative Physical Integration Cabin-System Structure

Regional Aircraft

Fast Rotorcraft
- Tilt Rotor
- Compound

Very/Ultra High Bypass Ratio Architectures
European Single European Sky: Comparison USA and Europe

USA
- ATM airspace: 9.8 mio. km²
- 1 ATC-organisations (civil + mil.)
- 21 en-route centres
- 1 operating systems
- 900 movements per controller
- $380 ATM cost / flight

Europe
- ATM airspace: 10.5 mio. km²
- 47 ATC-organisations (civil + mil.)
- 58 en-route centres
- 22 operating systems
- 480 movements per controller
- $667 ATM cost / flight

FABEC
- FABEC Airspace: 1.7 mio. sq km
- Belgium, France, Germany, The Netherlands and Switzerland
- Integration of 6 large international hubs
- FABEC will be operational in 2012!

Study: EUROCONTROL 2003
2007-2014 SESAR and 2015-2024 SESAR 2020

EU Contribution for SESAR 1: 2100 MEuro, for SESAR 2020: 1600 MEuro
SESAR Targets

• Safety: Factor 10
• Capacity: handle 3 times the traffic
• Environment: - 10% effects per flight
• Costs to airspace users: - 50%

• Also address: Security, Flexibility, Predictability, Global interoperability, Access, Equity, Participation
SESAR 2020 Budget Structure

Exploratory Research
- Air Vehicle Operations & Technology
- ATM Operations & Technology
- Airport Operations & Technology
- System Architecture
- ICT for Information Mgmt., Uncertainty & Optimisation
- Safety
- Security
- Role of the Human in Automation and Ops. Change
- Environment & Weather for Aviation
- Enabling Change: Economics, Legal, Policy & Regulation

Applied Research, Pre-Industrial Development, Validation

| AIRPORT: Airport Terminal, Surface & Tower Systems |
| ATM: Airspace, Traffic Management & Systems |
| AIRCRAFT: Air Vehicle Operations, Mission Management & Integration |
| INFRASTRUCTURE: ICNS, Training & Simulation Systems |

- Priority Business Needs – ATM Key Features & Enablers
- Operations, Technical Interoperability & Performance
- Remotely Piloted Air Systems (RPAS) Integration
- System(s) Architecture
- Safety & Security Management
- Societal Challenges
- Regulation & Standardisation Planning
- European ATM Master Plan Maintenance
- Preparation for Deployment

Large Scale Demonstrations
- Airspace Users
- Air Navigation Service Providers
- Supply Industries
- Airports
- National Authorities
- Staff Associations
- ESA
SESAR Demonstrators

Remote Tower

System Wide Information Management (SWIM)

Remotely Piloted Aerial Systems (RPAS)
1. Start of EU Aeronautics Research

2. Vision 2020, ACARE and SRAs

3. Safety related projects in the Framework Programmes

4. Clean Sky and SESAR

5. ACARE Beyond Vision 2020 and Flight Path 2050

6. Conclusions
ACARE Beyond Vision 2020 and Flightpath 2050
FlightPath 2050 High-Level Goals

Maintaining Global Leadership

- Providing the best products and associated services in aeronautics and air transport
- Ensuring the competitiveness of European Industry, supported by a strong research network and balanced regulatory framework in the face of fierce competition from established and emerging rivals
- Maximising the aviation’s economic contribution and creating value
- Attracting the best people and talents

Serving Society’s Needs

- Meeting societal and Market Needs for affordable, sustainable, reliable and seamless connectivity for passengers and freight with sufficient capacity
- Supporting the integration and cohesion of the European Union, its neighbours and partners
- Addressing societal needs with non-transport aerial applications enabled by new flight control technologies
- Protecting the environment and enabling the use of sustainable energy sources
- Ensuring complete and non-intrusive security
- **Ensuring safety**
- Providing opportunities for highly qualified and skilled jobs in Europe
Large Commercial Aircraft Safety Development

Ref. Boeing Safety Statistics 2017
Air traffic will double in the next 15 years

Source: ICAO, Airbus GMF 2016
Flightpath 2050 Goals and Challenges

1. Meeting Societal and Market Needs
2. Maintaining and Extending industrial leadership
3. Protecting the environment and energy supply
4. Ensuring Safety and Security
 1. Air vehicle operations and traffic management
 2. Design, manufacturing and Certification
 3. Human Factors
5. Prioritising research, testing capabilities and education
Aviation Safety Research Goals in Horizon 2020

• More robust, cost-efficient solutions for the whole life-cycle, based on novel methodologies and technologies towards improving the safety of the air transport system.

• Novel systematic identification of hazards and handling of data and processes tailored to the requirements of aviation that are efficient, effective and acceptable by all the relevant parties in the aviation value-chain.

• An improved understanding of environmental phenomena, their detection and the protection of aircraft in order to increase safety and reliability of operation.

• Performance of studies and research activities towards reinforcing old and developing new EASA capabilities, that will contribute to its performance-based regulatory and certification mission. Proposals may address research areas linked to implementation and monitoring of safety rules, type-certification of aircraft and components and approval of organisations involved in the design, manufacture and maintenance of aeronautical products.
• Horizon 2020 Work Programme 2014-2015: Mobility for Growth: Aviation
 • MG.1.1-2014: Competitiveness of European aviation through cost efficiency and innovation
 • MG.1.2-2015: Enhancing resource efficiency in aviation
 • MG.1.3-2014: Seamless and customer oriented air mobility
 • MG.1.4-2014: Coordinated research and innovation actions targeting the highest level of safety for European aviation: 15 Meuro
 • MG.1.5-2014: Breakthrough innovation for European aviation
 • MG.1.6-2014: Improving skills and knowledge base in European aviation
 • MG.1.7-2014: Support to European Aviation research and innovation policy
 • MG.1.8-2014-2015: International cooperation in aeronautics
 • Total MG 1.1-MG 1.8: 204 MEuro

• Horizon 2020 Work Programme 2016-2017: Mobility for Growth: Aviation
 • MG-1.1-2016: Reducing energy consumption and environmental impact of aviation
 • MG-1.2-2017: Reducing aviation noise
 • MG-1.3-2017: Maintaining industrial leadership in aeronautics
 • MG-1.4-2016-2017: Breakthrough innovation
 • MG-1.5-2016-2017: Identification of gaps, barriers and needs in aviation research
 • MG-3.1-2016: Addressing aviation safety challenges: 15 Meuro
 • Total MG 1.1-MG 1.5 and MG 3.1: 74 MEuro
EASA European Plan For Aviation Safety

Systemic Issues
- Working with States to implement and develop SSPs
- Working with States to foster the implementation of SMS in the industry
- Safety Management enablers
- Complexity of the system
- Competence of personnel

Operational Issues
- **Commercial Air Transport by Aeroplanes**
 - Runway Excursions
 - Mid-air Collisions
 - Controlled Flight Into Terrain
 - Loss of Control In Flight
 - Runway Incursions
 - Fire, Smoke and Fumes

- **Other Types of Operation**
 - Helicopters
 - General Aviation

Emerging Issues
- New products, systems, technologies and operations
- Environmental factors
- Regulatory considerations

Human Factors and Performance
FlightPath 2050, EPAS inputs to Future Sky Safety
Conclusions

- The EU started in 1989 in its 2nd Framework Programme with aeronautics research to support the European Aeronautical Industry. The EU aeronautics RDTE budget increased from 1988-2013 from 35 till 2100 Meuro.

- In 2001 ACARE was founded to advise the European Commission on topics and priorities for aeronautics RDT&E

- In the 7th FWP 1150 of the 2100 Meuro budget was dedicated to Technology Demonstrators in the Joint Undertakings Clean Sky and SESAR. In the Horizon 2020 Programme the JUs Clean Sky and SESAR are continued. A separate Horizon 2020 budget is available for Mobility for Growth (MG): Aviation.
 - For 2014-2015 a 15 MEuro budget is for MG.1.14-2014: Coordinated research and innovation actions targeting the highest level of safety for European aviation.
 - For 2016-2017 a 15 Meuro budget is for MG-3.1-2016: Addressing Aviation Safety Challenges. For promoting a culture of safety in aviation, by developing and enhancing cost-effective, safety-related products and processes

- EU-EREA-EASA cooperation through Future Sky Safety is a great step forward!