

Universit

R₂FIRE@UMET-UMR/CNRS 8207

Intumescence?

MET Intumescence for reaction and resistance to fire

 Applications: E&E, railway, cable & wire, aircraft cabin ...
Fire scenarios

(testing): UL94, glow wire, cone calorimeter, SBI, EN 50399 ...

Applications: building, offshore platform, aircraft ... Fire scenarios: UL1709, ISO834, ISO2685, jetfire ...

Fire protection of CFRP

Fire protection of composite: testing?

Fire resistance of fuselage and other parts of aircraft: full scale test or burnthrough test (jet fuel fire at ~186 kW/m²)

Post-crash fire simulation in full scale indoor at FAA

Burnthrough test (NexGen) Time consuming

- **Expensive**
- Slow development

Université

Silicone-based intumescent coating

Intumescent paint on CFRP: silicone-based coating containing expandable graphite* compared to low intumescing paint

Silicone formulation	F1 – High intumescing coating*	F2- Low intumescing coating
Silicone matrix	56%	56%
Expandable graphite	25%	-
Calcium carbonate	12%	37%
Clay	7%	7%

*S. Bourbigot et al. "Protecting substrates against damages by fire", WO 2013/150121 - DOW CORNING Dow Corning, 2013

Small scale test: Experimental set up

Infrared pyrometer and Th. stuck on composite (*T* = *f(t)*)

Sample + holder (*insulative ceramic*) Université de Lille

Burner (200 kW/m^2 at the surface – $T_{flame} \sim 1100^{\circ}C$)

Protection by intumescence: 1000μm

Protection by intumescence

Virgin composite

CFRP-F1

Mechanism of protection

- Heat barrier: high expansion, low k (0.4 W/m.K@600°C)
- Structure: high cohesion thanks to chemical interactions (SiC, Ca-Si)

- Heat barrier: low expansion, low k (0.4 W/m.K@600°C)
- Structure: cohesive porous structure (highly polymerized Si, Ca-Si)

Char characterization: X-ray tomography

Internal intumescent structure : slices at different z of char residues after test

After intumescence

End

Char characterization: fractal dimension

Binarization: extraction of the fractal dimension on a determined scale

After intumescence

-200 0 200 400 600 200 400 600 800 1000 1200 1400

 $Df = 1.7 \text{ on } 100-2000 \ \mu m$

Df = 1.7 on 100-700 μ m

End

Df suggests an oriented materials (higher aspect ratio): correlation with char strength?

ISO 2685 at reduced scale: dimensional analysis

Fire scenario at the small scale: how to play?

Linear extrapolation: feeling of visuals!

ISO 2685: goal and test

Pass/fail test for equipment located in fire zone (engine, auxiliary unit):

- Heat flux of 116 kW/m²
- T_{flame} of 1100°C
- Withstanding of the component for 5 min ⇒ fire proof
- Withstanding of the component for 15 min ⇒ fire resistant

ISO 2685: modeling and analysis

Université de Lille

Lower temperature field for the small- scale bench

No linear extrapolation but dimensional analysis to understand the differences

Small scale test: Experimental set up

Safran Project: Design and improvement of a test bench to fire a reduced scale

Université de Lille

.

Small scale test: intumescent CFRP

Efficiency of the fire protection from 250 μm via an intumescent behavior

Summary and future work

 Similitude: scale reduction is not straight forward but correlation can be found (ISO2685, NexGen...)

erc

- Intumescence: appropriate way for reaction and resistance to fire
- Further models: development of model working in flaming conditions (in progress)
- Gas phase: full characterization of the gas phase taking into account soot (radiative properties)

Acknowledgment

