Charting the Human Performance Envelope: Results from simulator experiments

Alia Lemkaddem, CSEM, Switzerland
Outline

• Background
• Human Performance Envelope
• Simulator experiments
• Database
• Extracted features
• Results
• Ongoing work
• Conclusion
Background

- Many safety critical domains rely on human operators (Air traffic control, Aviation, Maritime, Rail, Military, Medical, etc.)

- In Air Traffic Management, incidents are often the result of 2 or more factors

- This has led to the notion of a Human Performance Envelope (HPE)

- Need to know when operators are approaching the edges of acceptable human performance, e.g. when should automation take over?
Simulator experiments

8 different runs were defined

<table>
<thead>
<tr>
<th></th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
<th>Run 5</th>
<th>Run 6</th>
<th>Run 7</th>
<th>Run 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulence throughout whole scenario</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>x</td>
<td></td>
<td>Medium</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Approach and RWY change during initial approach (between IAF and FAF)</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low fuel situation throughout whole scenario</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay vectors during initial approach (between IAF and FAF)</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loud noise during final approach (between FAF and landing)</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low visibility throughout whole scenario</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Localizer interference during final approach (between FAF and landing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Wind shift during final approach (between FAF and landing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Baseline

- **M WL**: Medium WorkLoad
- **H WL**: High WorkLoad
- **VH WL**: Very High WorkLoad
- **H Stress**: High Stress
- **High SA**: High/reduced Situation Awareness

Project #6 HUMAN PERFORMANCE ENVELOPE
Database

Performance data obtained from the simulator:

- Speed
- Heading or track
- Altitude
- Vertical speed
- Localizer
- Glideslope
- Application of procedures
Database

Subjective data:

- NASA-TLX
- ISA
- 10D-SART
- Samn-Perrelli
- Debriefings
 - Performance curves
 - Behavioral markers
Database

Physiological data:

- Eye tracking glasses (electro-oculogram, EOG)
 - Pupil dilatation
 - Blinking rate
 - Gaze direction

[Image of eye tracking glasses]

[Image of cockpit interface]

[Website: www.smivision.com]
Database

Physiological data:

- CSEM vest:
 - Two electrocardiograms (ECG) leads
 - A transthoracic bio-impedance
 - Skin temperature
 - Accelerometer
 - Multi-channel photoplethysmography (PPG)
Extracted features

ECG signal

- RR intervals (ms)
- Heart Rate, HR (bpm)
Extracted features

Heart rate variability (HRV)

- HRV in time domain:
 - SDNN (standard deviation of NN intervals, ms)

- HRV in frequency domain:
 - HF (High frequency, 0.15 – 0.4 Hz, ms²)
 - LF (Low frequency, 0.04 - 0.15 Hz, ms²)
 - VLF (Low frequency, 0.0033 - 0.04 Hz, ms²)
Results on a single pilot

Run 3: High workload
Run 4: Very High workload

Phase 1 = Start -> TOD glideslope
Phase 2 = TOD -> Decision altitude
Phase 3 = Decision altitude -> End
Results on a single pilot

Run 8: High workload, high stress, high/reduced SA
Results on a single pilot

Run 8: High workload, high stress, high/reduced SA

Phase 1 = Start -> TOD glideslope
Phase 2 = TOD -> Decision altitude
Phase 3 = Decision altitude -> End
Results on a single pilot

HRV features

A) SDNN (ms)

B) HRV HF (ms²)

C) HRV LF (ms²)

D) HRV LF (ms²)

WLN Stress SA Mixed
Results of group analysis

WL Stress SA Mixed

A) B)
Results of group analysis

WL Stress SA Mixed

A) B)
Ongoing work

Performance vs physiological parameters

Run 3 Pilot 1
- LOC Deviation
- OAS Deviation
- HR
- SQNN

Pilot 1
- Mean FP Deviation
- Mean HR
- Mean SQNN

Heart Rate (bpm) / SQNN (ms)
- Baseline
 - 0.063141316
 - 64.7587272
 - 46.9384933

- High Wt.
 - 0.226022457
 - 71.9429370
 - 40.3694343
Conclusion

- Physiological measures such as HR, SDNN, HF, LF and VLF are sensitive to an increase in workload and/or stress.

- **High/reduced SA** (Run 6) was very often **not significant** to the baseline.

- **HR and SDNN** were particularly sensitive to the **increase in workload**.

- **HRV features** derived from the spectral analysis (**HF**, **LF** and **VLF**) showed a significant response to the **increase of stress**.

- Normalization of the **HR** is important in the group analysis (reliable baseline is required).
Thank you