

Charting the Human Performance Envelope: Results from simulator experiments

Alia Lemkaddem, CSEM, Switzerland

Outline

- Background
- Human Performance Envelope
- Simulator experiments
- Database
- Extracted features
- Results
- Ongoing work
- Conclusion

Background

- Many safety critical domains rely on human operators (Air traffic control, Aviation, Maritime, Rail, Military, Medical, etc.)
- In Air Traffic Management, incidents are often the result of 2 or more factors
- This has led to the notion of a Human Performance Envelope (HPE)
- Need to know when operators are approaching the edges of acceptable human performance, e.g. when should automation take over?

Simulator experiments

8 different runs were defined

- Turbulence throughout whole scenario
- Approach and RWY change during initial approach (between IAF and FAF)
- Low fuel situation throughout whole scenario
- Delay vectors during initial approach (between IAF and FAF)
- Loud noise during final approach (between FAF and landing)
- Low visibility throughout whole scenario
- Localizer interference during final approach (between FAF and landing)
- Wind shift during final approach (between FAF and landing)

Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8
	Medium	High	High			Medium	High
			х				
				х		x	х
				х		х	х
				х			х
					х	x	х
					х	x	х
					х		х
<u>.</u>		!		1			

						M WL,	H WL,
Baseline	M WL	H WL	VH WL	H Stress	H SA	M Stress,	H Stress,
						M SA	H SA

M WL:Medium WorkLoadH WL:High WorkLoadVH WL:Very High WorkLoadH Stress:High StressHigh SA:High/reduced Situation Awareness

Performance data obtained from the simulator:

- Speed
- ➢ Heading or track
- ➢ Altitude
- Vertical speed
- ➤ Localizer
- ➢ Glideslope
- Application of procedures

Subjective data:

- ➢ NASA-TLX
- ≻ ISA
- ➢ 10D-SART
- Samn-Perrelli
- Debriefings
 - Performance curves
 - Behavioral markers

Physiological data:

- Eye tracking glasses (electro-oculogram, EOG)
 - Pupil dilatation
 - o Blinking rate
 - Gaze direction

www.smivision.com

Physiological data:

CSEM vest:

- Two electrocardiograms (ECG) leads
- A transthoracic bio-impedance
- o Skin temperature
- Accelerometer
- Multi-channel photoplethysmograhy (PPG)

Extracted features

ECG signal

- RR intervals (*ms*)
- Heart Rate, HR (*bpm*)

Extracted features

Heart rate variability (HRV)

- HRV in time domain:
 - SDNN (standard deviation of NN intervals, *ms*)

Spectral estimation

- HRV in frequency domain:
 - HF (High frequency, 0.15 0.4 Hz, *ms*²)
 - LF (Low frequency, 0.04 0.15 Hz, *ms*²)
 - VLF (Low frequency, 0.0033 0.04 Hz, ms²)

Results on a single pilot

Run 3: High workload

Run 4: Very High workload

Phase 1 = Start -> TOD glideslope Phase 2 = TOD -> Decision altitude Phase 3 = Decision altitude -> End Results on a single pilot

Run 8: High workload, high stress, high/reduced SA

Results on a single pilot

Run 8: High workload, high stress, high/reduced SA

Phase 1 = Start -> TOD glideslope Phase 2 = TOD -> Decision altitude Phase 3 = Decision altitude -> End

HRV features

Results of group analysis

WL Stress SA Mixed

WL Stress SA Mixed

Performance vs physiological parameters

100

90

80

70

60

20 mdg

40 UP

30

20

10

0

[ms]

[hpm] / SDNN

- Physiological measures such as HR, SDNN, HF, LF and VLF are sensitive to an increase in workload and/or stress.
- **High/reduced SA** (Run 6) was very often **not significant** to the baseline.
- **HR and SDNN** were particularly sensitive to the **increase in workload.**
- **HRV features** derived from the spectral analysis (<u>HF</u>, <u>LF</u> and <u>VLF</u>) showed a significant response to the **increase of stress**.
- Normalization of the <u>HR</u> is important in the group analysis (reliable baseline is required).

Thank you