Risk modelling:
from safety data to a risk picture

Marta Llobet Lopez
EUROCONTROL - FSS P4
Models within the Risk Observatory

Structuring of safety data → Feed into integrated risk assessment framework

Acquire safety information

FDM data
Occurrence data
Exposure data
....

User:
Analyst
Manager

Domain:
Operator
ANSP
Manufacturer
Airport Authority

Prototype risk observatory

SAFETY | FUTURE SKY

16 March, 2017
Currently available

Different types of models, with different scope and purpose, using different type of data ...

- barriers based,
- event sequence diagrams,
- physical models,
- safety models for design, ...
Barrier Model

MAC

<table>
<thead>
<tr>
<th>Accident risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Providence</td>
</tr>
<tr>
<td>Near Collision</td>
</tr>
<tr>
<td>Imminent Collision</td>
</tr>
<tr>
<td>Imminent infringement</td>
</tr>
<tr>
<td>ACAS</td>
</tr>
<tr>
<td>STCA</td>
</tr>
<tr>
<td>Tactical</td>
</tr>
<tr>
<td>Planning</td>
</tr>
<tr>
<td>DCB</td>
</tr>
<tr>
<td>Strategic PIn</td>
</tr>
</tbody>
</table>

Precursors

<table>
<thead>
<tr>
<th>Groundside Induced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airside Induced</td>
</tr>
</tbody>
</table>

Induced Events

<table>
<thead>
<tr>
<th>Induced Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Tactical</td>
</tr>
<tr>
<td>Tactical</td>
</tr>
</tbody>
</table>

Barriers

Causal elements

Cont Cont Cont Cont Cont
Event Sequence Diagram
Physical Models

Contributing Factors

- Weight
- Wind
- Speed
- Flaps
- Start of Braking
- ...

Runway overrun

Incident Model

Landing distance available

Source: The Aviation Herald / AP / Kyodo News

Technische Universität München
Safety Models for design

Flight Phases
- Cruise
- Descent
- Approach
- Landing
- Go-Around

Procedure inhibit or customization

A/C initial state(s)
Transition level
- 500 ft
- 100 ft
- DH/MDA

External events / factors
Influencing factors (environmental events, runway characteristics & condition, ...)

Aircraft Functions & Systems
- A/C Functions
 - System Breakdown & Dependencies
- Observations
- System controls
- Cockpit HMI:
 - PFD/ND parameters
 - CAS alerts
 - Control Panels, etc.
- Cockpit effects

FHA - System Failure Conditions
- Observations
- Actions on systems
- FC initiation
- Initial state(s)
- External events / factors
- Procedure inhibit or customization

Pilot Abnormal Procedures
- Crew abnormal procedure:
 - triggered by an alert or others cockpit effects

Aircraft Functions & Systems
- Determine Cockpit HMI parameters, CAS alerts, Control Panels, etc.
- Observations
- System controls
- Cockpit effects

Cockpit HMI:
- Four Displayed Data (FDD)
- Instrument Panel (IP)
- Multi-Function Display (MFD)
- Navigation Display (ND)
- Flight Display (FD)

Cockpit effects:
- Master Caution Flashing
- CAS alerts
- Control Panels
- etc.

A/C Functions
- System Breakdown & Dependencies
- Observations
- System controls
- Cockpit HMI:
 - PFD/ND parameters
 - CAS alerts
 - Control Panels, etc.
- Cockpit effects

FHA - System Failure Conditions
- Observations
- Actions on systems
- FC initiation
- Initial state(s)
- External events / factors
- Procedure inhibit or customization
From ‘piecemeal’ view to the full picture...
Structuring the Risk Observatory

Need for a Risk Observatory structured in a way allowing to ‘plug’ different types of models in order to provide

- a full risk picture
- the risk associated to the several contributors of the different domains

BackBone Model
Backbone models

Safety Indicators

Contributing Factors

Influencing Factors

RO INTERFACE

BACKBONE MODELS

DOMAIN / SPECIFIC MODELS

MAC ER

RWY EXC

16 March, 2017

SAFETY | FUTURE SKY
Short Term Conflict Alert (STCA) functional chain

Backbone multi-domain model for STCA contributor factor

Adapation model to link backbone model to domain specific models

Domain-specific model

Ground equipment models

Airborne equipment models

Incident description:

- STCA tool fails to give effective warning in time
- Incorrect input data provided to STCA tool
- Incorrect STCA display
- Incorrect STCA processing
- Incorrect on-board transponder data (3D position, ID, DAPS)
- Surveillance technical failure
- Insufficient STCA Tool configuration integrity
- Insufficient STCA Tool reliability
- Insufficient STCA Tool configuration integrity
- Insufficient STCA Tool software integrity
- Insufficient STCA Tool hardware reliability (screen, graphic card, …)
- Insufficient operational configuration of STCA Tool (filtering in inhibition zones)

How it looks like …
Contributing Factors - Influencing Factors

Generic Contributing Factors

Specific Contributing Factors per domain:
- ANSP
- AC manufacturer
- Airborne SYS manufacturer
- Operator
- Ground SYS manufacturer

Mainly one to one

Mainly many to many
Risk Overview for current situation

Occurrences and Risk

- Mid-Air Collision
- Near Mid-Air Collision
- Separation Minima Infringement
- Tactical Conflicts
- Overloads

Safety Indicators

- SMI / RIN / AI (per 100k movements)
- Fire-risk
- Generic contributing factors (2 level of items max.)

Risk Areas

Ref.	Generic contributing factors (2 level of items max.)
31 | Airborne collision avoidance
32 | ATC collision prevention
33 | Tactical Conflict Management - Separation provision
34 | Traffic planning & coordination
35 | Airspace infringements Management
36 | AC Deviation Management
37 | Trajectory management
38 | Flow & Capacity management
Risk impact assessment for a specific change or situation

Risk Impact when modifying:

Contributing factors

Influencing factors
P4 - Total system risk assessment

- Providing a full risk picture
- Showing the contribution to risk from the several domains
- Supporting the safety impact assessment of changes within one or several domains

Models

P4 will deliver a Proof of concept, including the modelling part. Implementation, maintenance and operational use aspects in a real environment are beyond the timeframe of P4.
Consortium

Stichting Nationaal Lucht- en Ruimtevaartlaboratorium
Deutsches Zentrum für Luft- und Raumfahrt
Office national d’études et de recherches aérospatiales
Centro para a Excelência e Inovação na Indústria Automóvel
Centro Italiano Ricerche Aerospaziali
Centre Suisse d’Electronique et Microtechnique SA
Institutul National de Cercetari Aerospatiale “Elie Carafoli”
Instituto Nacional de Técnicas Aeroespaciales
Výzkumný a zkušební letecký ústav, a.s.
Totalforsvarets FORskningsinstitutt
European Organisation for the Safety of Air Navigation

Civil Aviation Authority UK
Airbus SAS
Airbus Operations SAS
Airbus Defence and Space
Thales Avionics SAS
Thales Air Systems SA
Deep Blue SRL
Technische Universität München
Deutsche Lufthansa Aktiengesellschaft
Service Technique de l’Aviation Civile
Embraer Portugal Estruturas em Compositos SA

Russian Central Aerohydrodynamics Institute TsAGI
Ente Nazionale di Assistenza al Volo Spa
Boeing Research and Technology Europe SLU
London School of Economics and Political Science
Alenia Aermacchi
Cranfield University
Trinity College Dublin
Zodiac Aerosafety Systems
Institut Polytechnique de Bordeaux
Koninklijke Luchtvaart Maatschappij
Sistemi Innovativi per il Controllo del Traffico Aereo

http://www.futuresky-safety.eu

Future Sky Safety has received funding from the European Union’s Horizon 2020 research and innovation programme, under Grant Agreement No 640597. This presentation only reflects the author’s view; the European Commission is not responsible for any use that may be made of the information it contains.